Combined Metabolic and Chemical (CoMetChem) Labeling Using Stable Isotopes – a Strategy to Reveal Site-Specific Histone Acetylation and Deacetylation Rates by LC-MS

09 February 2021, Version 1

Abstract

Histone acetylation is an important, reversible post-translational protein modification and a hallmark of epigenetic regulation. However, little is known about the dynamics of this process, due to the lack of analytical methods that can capture site-specific acetylation and deacetylation reactions. We present a new approach that combines metabolic and chemical labeling (CoMetChem) using uniformly 13C-labeled glucose and stable isotope labeled acetic anhydride. Thereby, chemically equivalent, fully acetylated histone species are generated enabling accurate relative quantification of site-specific lysine acetylation in tryptic peptides using high-resolution mass spectrometry. We show that CoMetChem enables site-specific quantification of the incorporation or loss of lysine acetylation over time, allowing the determination of reaction rates for acetylation and deacetylation. Thus, the CoMetChem methodology provides a comprehensive description of site-specific acetylation dynamics.

Keywords

Mass Spectrometry
Proteomics
Fluxomics

Supplementary materials

Title
Description
Actions
Title
CoMetChem Supporting Information
Description
Actions
Title
Table S2
Description
Actions
Title
Table S1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.