ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Automated Fast-Flow Synthesis of Antisense Phosphorodiamidate Morpholino Oligomers

preprint
submitted on 21.07.2020 and posted on 22.07.2020 by Chengxi Li, Alexander J. Callahan, Mark D. Simon, Kyle A. Totaro, Alexander J. Mijalis, Nina Hartrampf, Carly K. Schissel, Ming Zhou, Hong Zong, Gunnar J. Hanson, Andrei Loas, Nicola L. B. Pohl, Bradley L. Pentelute

The antisense phosphorodiamidate morpholino oligomer (PMO) drugs Eteplirsen and Golodirsen are improving the lives of some Duchenne muscular dystrophy (DMD) patients, but treating all DMD subtypes would require the development of over 50 novel antisense therapies. To rapidly prototype personalized PMO for diseases such as DMD, we designed a fully automated flow-based oligonucleotide synthesizer. Our optimized high temperature synthesis platform reduces coupling times by up to 22-fold compared to previously reported batch methods. We demonstrate the power of our new automated technology with the synthesis of milligram quantities of an 18-mer reporter PMO sequence in 3.5 hours, three new potential therapeutic PMO sequences targeted to exon 46 of the dystrophin gene in a single day, and a candidate antiviral PMO sequence targeted to the SARS-CoV-2 genomic mRNA in 3.5 hours. This flexible flow synthesis platform can be used for on-demand production of a broad range of personalized therapeutic polymers.

Funding

Sarepta Therapeutics

History

Email Address of Submitting Author

blp@mit.edu

Institution

Massachusetts Institute of Technology

Country

United States

ORCID For Submitting Author

0000-0002-7242-801X

Declaration of Conflict of Interest

B.L.P. is a co-founder of Amide Technologies and Resolute Bio. Both companies focus on the development of protein and peptide therapeutics. An international patent application covering part of this work has been filed by MIT and Sarepta Therapeutics (Int. Pat. Appl. WO2019060862A1).

Exports