Efficient targeted degradation via reversible and irreversible covalent PROTACs

08 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

PROteolysis Targeting Chimeras (PROTACs) represent an exciting inhibitory modality with many advantages, including sub-stoichiometric degradation of targets. Their scope, though, is still limited to-date by the requirement for a sufficiently potent target binder. A solution that proved useful in tackling challenging targets is the use of electrophiles to allow irreversible binding to the target. However, such binding will negate the catalytic nature of PROTACs. Reversible covalent PROTACs offer the best of both worlds. They possess the potency and selectivity associated with the formation of the covalent bond, while being able to dissociate and regenerate once the protein target is degraded. Using Bruton’s tyrosine kinase (BTK) as a clinically relevant model system, we present a proof-of concept for the first in class cyanoacrylamide reversible covalent PROTACs. We show efficient degradation with reversible covalent PROTACs, as well as their non-covalent and irreversible counterparts. The latter are amongst the most efficient PROTACs reported for BTK. They display single digit nM DC50, full degradation within 2-4 hours, proteome wide selectivity and show ~10-fold better inhibition of B cell activation than Ibrutinib. These examples refute the notion that covalent binders are not suitable as the basis for PROTACs, and may pave the way for the design of covalent PROTACs for a wide variety of challenging targets.

Keywords

PROTACs
reversible covalent
cyanoacrylamides
BTK
targeted degradation

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions
Title
SupplementaryInfo
Description
Actions
Title
SupplementaryChemistry
Description
Actions
Title
Supplumentry Dataset 1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.