Design and Synthesis of Amino Acid Derivatives of Substituted Benzimidazoles and Pyrazoles as Selective Sirt1 Inhibitors

27 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Owing to its presence in several biological processes Sirt1 served as a potential therapeutic target for many diseases. Here we report the synthesis of two distinct series of novel Sirt1 selective inhibitors, benzimidazole monopeptides and 5-pyrazolyl methylidene rhodanine carboxylic acid derived amino acids, constructed using structure-guided computational approaches. Furthermore, compounds were evaluated, against human Sirt1-3 for in-vitro inhibitory activity compared to Ex527 (reported Sirt1-selective inhibitor), in liver and breast cancer cell lines for cytotoxicity. The tryptophan conjugates 13h (IC50 = 0.66 µM) and 7d (IC50 = 0.77 µM) demonstrated maximum efficacy to inhibit Sirt1. Molecular dynamics simulations unveil the interaction map and electrostatic complementarity at substrate binding site, could be a cause of selective Sirt1 inhibition. Furthermore, the Sirt1 inhibition was monitored via increased p53 acetylation status checked in HepG2 cells. These findings will pave the pathway for developing novel selective Sirt1-inhibitors in cancer therapeutics.

Keywords

Selective inhibitor, Sirtuins, Structure activity relationship, Molecular dynamics simulations, Electrostatic surface potential, hot-spot, drug discovery

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.