Cis versus Trans C-F Activation of Hexafluorobenzene with N-heterocyclic Carbene Ni(0) Complexes

01 July 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fluorine is an essential component in many highly effective pharmaceutical drugs, however the selective fluorination of organic molecules poses a challenge. A common route to installing fluorine involves C-F bond cleavage, which is often accomplished using second- or third-row transition metals. Base metal catalysts such as nickel may provide a facile, sustainable, and cheaper alternative for C-F activation. Monodentate N-heterocyclic carbene (NHC) nickel complexes have been reported to undergo C-F activation, however bis-bidentate NHC (RNHC2R1; R, R1 = alkyl or aryl) analogs remain underexplored. This work reports a series of RNHC2R1 nickel(0) complexes with various R1 linkers to determine the effect of the linker on the C-F activation of hexafluorobenzene. Comparisons include a reference nickel(0) complex with two monodentate NHC ligands, and results show that low-valent nickel NHC complexes readily break the C-F bond in C6F6 via oxidative addition. Crystallographic and NMR characterization demonstrate that ligand design and denticity affect the cis versus trans orientation of the final product, with the possibility for additional ligand C-H activation.

Keywords

C-F activation
NHC
nickel

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.