A phenazine-linked π-conjugated covalent organic framework for conjugation-driven drug loading

02 July 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The rational design of π-conjugated covalent organic frameworks (COFs) represents a promising frontier in functional porous materials for drug delivery, particularly when conjugation–affinity correlations can be harnessed. Herein, we report the synthesis and characterization of a structurally unique phenazine-linked π-conjugated COF (TU-32) constructed from 2,7-di-tert-butylpyrene-4,5,9,10-tetraone and 9,10-dihydro-9,10-[1,2]benzenoanthracene-2,3,6,7,14,15-hexaamine hexahydrochloride. In contrast to conventional 2D COFs that exhibit π–π stacking, this COF adopts an atypical AB stacking mode along the c-axis, resulting in suppressed interlayer π-stacking and enhanced structural regularity. The incorporation of extended π-conjugation through phenazine linkages enables selective interactions with conjugated drug molecules. Among three drug molecules tested—5-fluorouracil, isoniazid, and captopril—the COF demonstrated the highest loading capacity (56 wt%) for 5-fluorouracil, which features a fully conjugated pyrimidine-like ring, followed by isoniazid (54 wt%), which contains a moderately conjugated pyridyl moiety. In contrast, captopril, which lacks significant π-conjugation, showed a lower loading (36 wt%). Our findings underscore the importance of molecular-level π–π interactions in drug encapsulation and highlight how precise framework engineering via π-conjugated building blocks enables conjugation-driven guest affinity, offering key insights and design blueprint for next-generation conjugated porous frameworks for precision therapeutic delivery.

Keywords

covalent organic framework
π-conjugated
drug loading

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.