g-xTB: A General-Purpose Extended Tight-Binding Electronic Structure Method For the Elements H to Lr (Z=1–103)

24 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present g-xTB, a next-generation semi-empirical electronic structure method derived from tight-binding (TB) approximations to Kohn–Sham density functional theory (KS-DFT). Designed to bridge the gap between semi-empirical quantum mechanical (SQM) approaches and DFT in terms of accuracy, robustness, and general applicability, g-xTB targets the performance of the ωB97M-V range-separated hybrid density functional with large basis sets while maintaining TB speed. Key innovations include an atom-in-molecule adaptive atomic orbital basis, a refined Hamiltonian incorporating range-separated approximate Fock exchange, up to fourth-order charge-fluctuation terms with a novel first-order electronic contribution, and atomic correction potentials (ACPs), as well as a charge-dependent semi-classical repulsion function. Parameterized on extended and extremely diverse molecular training sets – including “mindless molecules” – g-xTB achieves excellent accuracy across a broad chemical space, including the actinide elements. Benchmarking against around 32k relative energies across thermochemistry, conformational energetics, non-covalent interactions, and reaction barriers shows that g-xTB consistently outperforms GFN2-xTB, often reducing mean absolute errors by half. Notably, it achieves a WTMAD-2 of 9.3 kcal mol−1 on the full GMTKN55 benchmark, comparable to low-cost DFT methods. It also shows substantial improvements for transition-metal complexes, relative spin state energies, and orbital energy gaps – areas where many SQM and even DFT methods often struggle. In summary, g-xTB offers DFT-like accuracy with minimal computational overhead compared to its predecessor, GFN2-xTB, making it a robust, minimally empirical, transferable, and efficient alternative to machine learning interatomic potentials for a wide range of molecular simulations. It is proposed as a general replacement for the GFNn-xTB family and, in many practical cases, a viable substitute for low- and mid-level DFT methods.

Keywords

extended tight-binding
semiempirical quantum mechanics
density functional theory
electronic structure

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
The supporting information contains (i) a com plete derivation of g-xTB including all components of the total energy and the Fock matrix, (ii) details on the calculation of spin-constants and atomic exchange integrals, and (iii) further results, including detailed statistical results for all subsets and methods of the GMTKN55 and errors for total energies on a subset of the QCML database.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.