PredPotS – A Web Tool for Predicting One-Electron Standard Reduction Potentials for Organic Molecules in Aqueous Phase

20 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An interactive web tool, PredPotS, has been developed for predicting one-electron standard reduction potentials of organic molecules in aqueous solutions. The predictions are generated using deep learning models trained and validated on a chemically diverse database comprising reduction potentials of approximately 8000 organic compounds. The reduction potentials of this database were computed using a composite computational protocol that combines the semiempirical quantum chemical method GFN2-xTB) and a well-established DFT approach (M06-2X functional along with the SMD solvent model). While this computational approach is cost-effective, it is subject to certain limitations, which are nonetheless duly accounted for in the development of the database. The applied graph-based deep learning methods perform remarkably well in terms of the standard performance metrics. By entering or uploading the SMILES codes of the molecules, PredPotS provides fast and sensible predictions for one-electron standard reduction potentials for a diverse set of organic molecules also in the range compatible with the electrochemical stability of aqueous electrolytes. The PredPotS web tool is particularly well-suited for screening redox-active candidates for aqueous organic redox flow batteries, but it may also prove useful in a variety of other electrochemical applications.

Keywords

redox flow battery
redox potential
computational database
deep learning
web application

Supplementary materials

Title
Description
Actions
Title
ESI: PredPotS – A Web Tool for Predicting One-Electron Standard Reduction Potentials for Organic Molecules in Aqueous Phase
Description
Electronic supporting information on the RP-ChEMBL database, deep learning methodology, PredPotS web application.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.