Continued Challenges in High-Throughput Materials Predictions: MatterGen predicts compounds from the training dataset.

19 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

High-throughput computational tools and generative AI models aim to revolutionise materials discovery by enabling the rapid prediction of novel inorganic compounds. However, these tools face persistent challenges with modelling compounds where multiple elements occupy the same crystallographic site, often leading to misclassification of known disordered phases as new ordered compounds. Recently, Microsoft revealed MatterGen as a tool for predicting new materials. As a proof of concept, MatterGen was used to predict the novel compound TaCr2O6, which was subsequently synthesised in a disordered form as Ta1/3Cr2/3O2. However, detailed crystallographic analysis, presented in this paper, reveals that this is not a novel compound but is identical to the already known compound Ta1/2Cr1/2O2 reported in 1972 and actually included in MatterGen’s training dataset. These findings underscore the necessity of rigorous human verification in AI-assisted materials research, limiting their use for rapid and large-scale prediction of new materials. While generative models hold great promise, their effectiveness is currently limited by unresolved issues with disorder prediction and dataset validation. Improved integration with crystallographic expertise is essential to realise their full potential.

Keywords

MatterGen
Materials Prediction
Crystallography

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.