MgO-water interface: Structure and surface dissolution depend on flow and pH

19 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Magnesium oxide (MgO) is frequently in contact with water throughout numerous research and industrial applications and in nature. Remarkably, we found that there is a substantial influence on the interfacial structure and dissolution process whether water is flowing or static at the MgO(100) surface. Sum frequency generation spectroscopy revealed that flowing acidic solutions enhance the charging of the MgO surface, which leads to an increased net orientation of water close to the surface. Contrary, the MgO surface resembles a near neutrally charged state when in contact with static liquid for all tested solutions between pH 3 and pH 11. We explain this surprising observation with the dissolution of MgO in aqueous solutions, which effectively removes charge from the interfacial region. The continuous solution exchange due to flowing liquid shifts the equilibrium towards a more charged state in comparison to static liquid. Additionally, by investigating the transition from flowing to static liquid we found a reaction order of around 0.5 for the dissolution reaction with respect to the H+ concentration.

Keywords

Interfacial Structure
Mineral-Water Interface
Vibrational Spectroscopy
Magnesium Oxide
Dissolution

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
The supporting information contains all experimental details and experiments supporting conclusions from the main text.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.