IR–NMR Multimodal Computational Spectra Dataset for 177K Patent-Extracted Organic Molecules

19 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The construction of predictive models in molecular science increasingly relies on large, high-quality datasets. Synthetic data generation is becoming a foundational strategy for advancing model accuracy and enabling fast discovery workflows. To support the development of structure elucidation and spectral property prediction models, we present a comprehensive synthetic dataset of infrared (IR) and nuclear magnetic resonance (NMR) spectra for a diverse ensemble of organic molecules. The data were generated using a hybrid computational approach that integrates molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and machine learning (ML) models. The dataset primarily consists of IR spectra for 177,461 molecules, derived from long-timescale MD simulations with ML-accelerated dipole moment predictions. In addition, it includes a smaller subset of 1H-NMR and 13C-NMR chemical shifts for 1,255 molecules. This unique combination of spectral data offers a valuable resource for benchmarking and validating computational methodologies, developing and enhancing artificial intelligence (AI) models for molecular property prediction, and facilitating the interpretation of experimental spectroscopic results. The dataset is publicly available through Zenodo, encouraging its broad utilization within the scientific community.

Keywords

Nuclear Magnetic Resonance (NMR)
Infrared Spectroscopy (IR)
Spectroscopy
Molecular Dynamics (MD)

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.