Single-molecule Vibrational Thermometry

17 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular probes of temperature (termed “molecular thermometers”) have become broadly used for in situ temperature measurements. Here, we describe Boltzmann-edge vibrational thermometry (BET) detected by anti-Stokes fluorescence, where the relative population of vibrationally excited molecules acts as a calibration-free reporter of local temperature based on the Boltzmann distribution. We demonstrate that BET microscopy is readily compatible with biological samples and achieves single-molecule sensitivity. We then show that local environments can be characterized through the modulation of vibrational temperature by mid-infrared absorption, allowing for BET fingerprinting. This work provides a foundation for sensitive vibrational thermometry in biological imaging.

Keywords

molecular vibrational thermometry
Boltzmann distribution
vibrational temperature
fluorescence microscopy
single-molecule imaging

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Methods and supporting figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.