Supramolecular topological adhesion boosts delamination resistance in carbon fiber reinforced polymers

13 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study, we introduce supramolecular topological adhesion as an innovative and effective methodology to enhance interlaminar fracture toughness in carbon fiber reinforced polymers (CFRPs). We achieved remarkable improvements in delamination resistance by physically entangling phenoxy resins within an epoxy matrix and introducing sacrificial H-bond interactions via ODIN (1-(7-Oxo-7,8-Dihydro-1,8-Naphthyridin-2-yl)urea) units. The ODIN units form sextuple H-bonding dimers in the cured epoxy matrix among plies, experimentally quantified via UV-Vis spectroscopy, whose detachment hinders crack propagation. The viability of this approach was tested using various phenoxy resins with different molecular weights and with different levels of ODIN functionalization. Single lap shear (SLS) tests demonstrated a notable increase in adhesion strength, sorting out PKHB-ODIN 13% as the best candidate as interlaminar adherent. Delamination resistance was determined through double cantilever beam (DCB) and end-notched flexure (ENF) tests, showing up to 120% and 80% increases in Mode I and Mode II fracture toughness, respectively. The limited DCB and ENF test increments observed for control adherent PKHB-PU 23% functionalized with phenylurea (PU) groups, demonstrates that the strength of topological H-bonding is pivotal to boost delamination resistance. The results indicate that this method holds great potential for improving the durability of CFRP composites, especially in applications requiring high resistance to delamination.

Keywords

Topological adhesion
sextuple H-bonds
delamination resistance
carbon fiber reinforced polymers

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Methods 1H NMR spectra ATR FT-IR spectra DSC analysis Viscoelastic properties Single Lap Shear (SLS) tests Delamination tests Double Cantilever Beam (DCB) and End Notched Fracture (ENF) results UV-Vis analysis
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.