Abstract
The separation of rare-earth metals, vital for numerous advanced technologies, is hampered by their similar chemical properties, making ligand discovery a significant challenge. Traditional experimental and quantum chemistry approaches for identifying effective ligands are often resource-intensive. We introduce a machine learning protocol based on an equivariant neural network, Allegro, for the rapid and accurate prediction of binding energies in rare-earth complexes. Key to this work is our newly curated dataset of rare-earth metal complexes—made publicly available to foster further research—systematically generated using the \emph{Architector} program. This dataset distinctively features functionalized derivatives of proven rare-earth-chelating scaffolds, hydroxypyridinone (HOPO), catecholamide (CAM), and their thio-analogues, selected for their established efficacy in binding these elements. Trained on this valuable resource, our Allegro models demonstrate excellent performance, particularly when trained to directly predict DFT-level binding energies, yielding highly accurate results that closely correlate with theoretical calculations on a diverse test set. Furthermore, this strategy exhibited strong out-of-sample generalization, accurately predicting binding energies for an isomeric HOPO-derivative ligand not seen during training. By substantially reducing computational demands, this machine learning framework, alongside the provided dataset, represent powerful tools to accelerate the high-throughput screening and rational design of novel ligands for efficient rare-earth metal separation.
Supplementary materials
Title
Supporting Information
Description
Tables of ligand charges and rare-earth element spin states (Tables S1, S2); Parity plots for Allegro models (features=2) for both direct binding energy and $\Delta$-ML prediction approaches (Figures S1, S2); Results for Strategy 1 (absolute energy prediction) applied to the HDEV out-of-sample complexes (Figure S3).
Actions