Ground-State Charge-Transfer Doping Interactions in Donor–Acceptor Semiconducting Polymers

06 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Conjugated polymers are at the heart of numerous current and emerging technologies. Doping, a process by which charge carriers are introduced, is crucial to their functionality and performance. Despite significant historical context and the exploration of a broad chemical space, doping processes that are activated by formation of a ground-state charge-transfer complex (GS-CTC), which is mediated by the supramolecular hybridization between the frontier molecular orbitals of distinct molecular species, remain poorly understood. There are no clear demonstrations of this phenomena in contemporary donor–acceptor (DA) conjugated polymers (CP). Here, using diketopyrrolopyrrole-based donor–acceptor semiconducting polymers and a -conjugated penta-t-butylpentacyanopentabenzo[25]annulene “cyanostar” macrocycle, we demonstrate the first examples of features that control GS-CTC formation in contemporary DA CP frameworks. Using complementary experimental techniques and theory, we articulate how subtle molecular, electronic, and solid-state features impact supramolecular hybridization of the frontier molecular orbitals and impact the resultant (opto)electronic, magnetic, and transport properties. These studies demonstrate that subtle effects arising from the admixture between distinct -conjugated materials can have dramatic outcomes on properties and performance through modification of the density of states (DOS). These results will enable completely new design rules for organic semiconductors with precise property control.

Supplementary materials

Title
Description
Actions
Title
Supporing Information for Ground-State Charge-Transfer Doping Interactions in Donor–Acceptor Semiconducting Polymers
Description
ESI contains the 1H NMR data of the polymers synthesized, HOMO, LUMO, and ESP plots of pristine polymers and polymer: CS blends, DOS-PDOS analysis, AFM images, CV data, etc.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.