An Automated QM/MM Average Protein Electrostatic Configuration Approach for Flavoproteins: APEC-F 2.0

06 June 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Flavoproteins are a ubiquitous class of redox proteins, enzymes, and photoreceptors that derive their versatility from the flavin cofactor, a prosthetic group that serves as the main locus of their spectral, photophysical, and (photo)chemical properties. It is thus common for computational modeling of flavoproteins to employ a hybrid approach that treats the flavin quantum mechanically and remaining atoms classically. Such QM/MM methods have proven powerful for studying flavoproteins so far, but users are often faced with a choice between treating the flavin electronic structure with ab initio wave function methods or using more approximate methods that allow for more extensive sampling of the protein dynamics. Herein, we present APEC-F 2.0, an automated QM/MM workflow that uses several open-source software to construct QM/MM models of flavoproteins. Exploiting the rigidity of flavin's tricyclic isoalloxazine ring, the APEC approach iteratively optimizes flavin's geometry in a static MM environment that represents a dynamic protein using a superposition of configurations generated from molecular dynamics. The automation of the code enables the systematic construction of QM/MM models using a common protocol and is suitable for comparing flavin's spectral, electronic, and chemical properties in different redox, protonation, or excited states in a wide range of flavoproteins.

Keywords

QM/MM
Flavoproteins
Photophysics
Redox proteins
Molecular Dynamics

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.