Automated Structure Elucidation at Human-Level Accuracy via a Multimodal Multitask Language Model

31 May 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Structure elucidation is crucial for identifying unknown chemical compounds, yet traditional spectroscopic analysis remains labour-intensive and challenging, particularly when applied to a large number of spectra. Although machine learning models have successfully predicted chemical structures from individual spectroscopic modalities, they typically fail to integrate multiple modalities concurrently, as expert chemists usually do. Here, we introduce a multimodal multitask transformer model capable of accurately predicting molecular structures from integrated spectroscopic data, including Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectroscopy. Trained initially on extensive simulated datasets and subsequently finetuned on experimental spectra, our model achieves Top-1 prediction accuracies up to 96%. We demonstrate the model's capability to leverage synergistic information from different spectroscopic techniques and show that it performs on par with expert human chemists, significantly outperforming traditional computational methods. Our model represents a major advancement toward fully automated chemical analysis, offering substantial improvements in efficiency and accuracy for chemical research and discovery.

Keywords

NMR Spectroscopy
IR Spectroscopy
Language Model

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information containing additional analysis of the predictions of the model, as well as experimental data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.