Artificial Intelligence for Direct Prediction of Molecular Dynamics Across Chemical Space

21 May 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular dynamics (MD) is a powerful tool for exploring the behavior of atomistic systems, but its reliance on sequential numerical integration limits simulation efficiency. We present MDtrajNet-1, a foundational AI model that directly generates MD trajectories across chemical space, bypassing force calculations and integration. This approach accelerates simulations by up to two orders of magnitude compared to traditional MD, even those enhanced by machine-learning interatomic potentials. MDtrajNet-1 combines equivariant neural networks with a Transformer-based architecture to achieve strong accuracy and transferability in predicting long-time trajectories for both known and unseen systems. Remarkably, the errors of the trajectories generated by MDtrajNet-1 for various molecular systems are close to those of the conventional ab initio MD. The model’s flexible design supports diverse application scenarios, including different statistical ensembles, boundary conditions, and interaction types. By overcoming the intrinsic speed barrier of conventional MD, MDtrajNet-1 opens new frontiers in efficient and scalable atomistic simulations.

Keywords

molecular dynamics
four-dimensional spacetime models
learning trajectories

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.