Crystal structure prediction of organic molecules by machine learning-based lattice sampling and structure relaxation

19 May 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Predicting the crystal structures of organic molecules remains a formidable challenge due to intensive computational cost. To address this issue, we developed a crystal structure prediction (CSP) workflow that combines machine learning-based lattice sampling with structure relaxation via a neural network potential. The lattice sampling employs two machine learning models—a space group classifier and a density regressor—that reduce the generation of low-density, less-stable structures. In tests on 20 organic crystals of varying complexity, our approach achieved an 80% success rate—twice that of a random CSP—demonstrating its effectiveness in narrowing the search space and increasing the probability of finding the experimentally observed crystal structure. We also characterized which molecular and crystal parameters influence the success rate of CSP, clarifying the effectiveness and limitation of the current workflow. This study underscores the utility of combining machine learning models with efficient structure relaxations to accelerate organic crystal structure discovery.

Keywords

crystal structure prediction
machine learning
organic molecular crystals
neural network potential

Supplementary materials

Title
Description
Actions
Title
Supplementary Information File
Description
This file presents Supplementary Figures and Tables.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.