Grain Boundary Tuning Determines Iodide and Lithium-Ion Migration in a Solid Adiponitrile-LiI Molecular Crystal Electrolyte

16 May 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This work presents the synthesis of a molecular crystal of adiponitrile (Adpn) and LiI via a simple melting method. The molecular crystal has both Li+ and I- channels and can be either a Li+ or I- conductor. In the stoichiomnetric crystal (Adpn)2LiI, the Li+ ions interact only with four C≡N groups of Adpn while the I- ions are uncoordinated. Ab initio calculations indicate that the activation energy for ion hopping is less for the I- (Ea = 60 kJ/mol) than for the Li+ (Ea = 93 kJ/mol) ions, and is predominantly an I- conductor, with a lithium-ion transference number (t_Li^+) of t_Li^+ = 0.15, no lithium plating/stripping observed in the cyclic voltammograms (CVs), and a conductivity of σ = 10-4 S/cm at 30 oC. With the addition of excess adiponitrile, which resides in the grain boundaries between the crystal grains, the contribution of Li+ ions to the conductivity increases, so that for the nonstoichiometric molecular crystal (Adpn)3LiI, Li↔ Li^+ redox reactions are observed in the CVs, t_Li^+ = 0.63, conductivity increases to σ = 10-3 S/cm 30 0C, the voltage stability window is 4V, and it is thermally stable to 130 o.C, showcasing the potential of this electrolyte for advanced solid-state Li-I battery applications. The solid (Adpn)3LiI minimizes migration of polyiodides, inhibiting the “shuttle” effect.

Keywords

Lithium Iodide
adiponitrile
lithium ion battery
lithium electrolyte
grain boundary

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
SEM, EDX, phase transition and additional cyclic voltammetry data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.