Regioisomeric Engineering of Sterically Hindered Bright Near-Infrared Paraptosis Agents for Chemo-Photodynamic Therapy

05 May 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Paraptosis emerges as a new promising form of programmed non-apoptotic cell death in chemotherapeutic anticancer therapy. However, current paraptosis agents face critical challenges, including poor targeting specificity, limited imaging capability, and low therapeutic efficacy. To overcome these limitations, we developed a novel approach by functionalizing the tetraphenylethylene (TPE) unit at the meso position of xanthene dyes, enabling the synthesis of two sterically hindered regioisomeric fluorescent paraptosis-inducing agents (m-TSX and p-TSX) for mitochondria-targeted chemo-photodynamic anticancer therapy. These agents exhibited strong near-infrared (NIR) emissions (~663 nm) with a quantum yield of up to 82.9%. The TPE substitution, in contrast to the phenyl group, allowed for precise modulation of triplet excited state energy levels, boosting type I/II reactive oxygen species (ROS) generation, and notable enhancement of the paraptotic anticancer activity. Comparative studies of the meta and para-substituted regioisomers revealed that the metasubstituted m-TSX exhibited superior ROS generation and anticancer behavior. m-TSX effectively induced Alix/ATF4-regulated paraptosis, along with apoptosis and necrosis, while also triggering GPX4/SLC7A11-regulated ferroptosis under low-power 655 nm laser (0.1 W/cm2) irradiation, leading to effective cancer cell growth inhibition. Furthermore, in vivo chemo-photodynamic therapy against HeLa tumor by inducing multiple cell death pathways was successfully achieved. This innovative strategy of steric hindrance regulation represents a breakthrough in developing bright NIR xanthene-based anticancer agents for synergistic cancer therapy.

Supplementary materials

Title
Description
Actions
Title
SI file
Description
SI file
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.