Abstract
Ordered protein-based assemblies are increasingly desirable for materials science, but design of new materials remains challenging and requires considerable effort. Crystal lattice contact modulation enables rapid rational design of an assortment of structurally diverse constructs with crystalline order. Targeted disruption of crystal contacts and directional growth pre-biassing allow to restrict crystal lattice growth in selected directions, resulting in lower-dimension assemblies with parent crystal structural features. Two-dimensional crystals, one-dimensional fibres, flexible ribbons, and single-walled nanotubes based on tetratricopeptide repeat proteins were constructed from reengineered 3D crystal lattices. The large library of available crystal structures provides an abundance of engineering targets, promising to make crystal contact engineering a rapid and attractive approach for the design of ordered supramolecular protein assemblies.
Supplementary materials
Title
Supplementary material
Description
Supplementary material: contains methods, protein sequences and additional data.
Actions