Effect of Solvents on Lignin-Surface Interactions via Molecular Dynamics Simulations

22 April 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lignin, an essential building block of lignocellulosic biomass, is a potential abundant source of aromatic monomers for the polymer and chemical industry. Reductive catalytic fractionation (RCF) is one promising process that can produce high yields of phenolic monomers and oligomers from lignin under different catalytic conditions. An important choice in optimizing RCF is the selection of solvent; however, detailed insights into solvent effects on lignin behaviors and interactions remain limited. In this work, we perform all-atom molecular dynamics simulations to study the solvation of lignin, solvent-mediated conformational changes, and the interaction of solvated lignin oligomers with model surfaces. We focus on the behavior of an oligomeric lignin model compound in methanol, ethanol, a binary mixture of ethanol and water, and water at both the RCF reaction temperature (473 K) and room temperature. Analysis of structural features of lignin suggests that these three organic solvent systems favorably solvate lignin, resulting in a more extended conformation suitable for catalytic conversion to valuable chemicals. We further introduce model palladium (Pd) and carbon (C) surfaces to understand how solvent choice impacts adsorption onto a representative catalytic surface and support, and to quantify the competition among the reactant and solvent molecules for the surface. Unbiased simulations suggest strong adsorption of lignin on both Pd and C surfaces at 473 K, with notable solvent-mediated differences in adsorption energies. Additionally, our findings indicate that lignin adsorption is promoted by the entropy change resulting from the displacement of solvent molecules from the surface. This study provides a molecular perspective of adsorption of lignin onto varying surfaces, which is a step towards understanding and optimizing the catalytic conversion of lignin into valuable chemicals.

Keywords

Lignin
molecular dynamics
solvation
adsorption
solvent effects

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Additional simulation methodological details, additional simulation results and snapshots, data supporting method convergence, tables showing simulation results.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.