Indole Photocatalysts and Secondary Amine Ligands Enable Nickel-Photoredox C(sp2)–Heteroatom Couplings

04 April 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nickel-photochemical C(sp²)–heteroatom coupling reactions have emerged as a powerful tool for constructing diverse molecular architectures. However, most existing methods rely on expensive photocatalysts or specialized ligands, limiting their practicality and scalability. Here, we introduce a photocatalytic initiation strategy driven by inexpensive indoles, eliminating the need for designer photocatalysts. Additionally, we demonstrate the effectiveness of highly tunable secondary amine ligands in facilitating coupling while suppressing side reactions that sequester the Ni catalyst off-cycle. Our approach enables a broad range of amination and etherification reactions with excellent yields and functional group tolerance, providing a scalable platform for C–N and C–O couplings that relies on a readily available photocatalyst and cost-effective, modular ligands. Finally, mechanistic investigations suggest that the reaction operates via an unconventional aryl radical-initiated Ni(I/III) catalytic cycle, distinguishing it from traditional Ni-photoredox processes. This new initiation mode, in which aryl radicals are generated under mild conditions compatible with organometallic catalysis, is expected to serve as a generalizable platform for other synthetic transformations beyond Ni-catalyzed processes.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.