Generative deep learning for de novo drug design – a chemical space odyssey

02 April 2025, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In recent years, generative deep learning has emerged as a transformative approach in drug design, promising to explore the vast chemical space and generate novel molecules with desired biological properties. This perspective examines the challenges and opportunities of applying generative models to drug discovery, focusing on the intricate tasks related to molecule generation, evaluation and prioritization. Central to this process is navigating conflicting information from diverse sources – balancing chemical diversity, synthesizability, and bioactivity. We discuss the current state of generative methods, their optimization, and the critical need for robust evaluation protocols. By mapping this evolving landscape, we outline key building blocks, inherent dilemmas, and future directions in the journey to fully harness generative deep learning in the ‘chemical odyssey’ of drug design.

Keywords

deep learning
de novo design
drug discovery

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.