Glycosaminoglycans as Polyelectrolytes: Charge, Interaction, and Applications

21 March 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Glycosaminoglycans (GAGs) are linear, negatively charged biopolymers that modulate complex biological processes, such as blood coagulation, immune regulation, or viral entry. Their sulfation pattern and chain length govern how strongly they bind to other physiologically relevant species. Most of these interactions rely on electrostatic forces facilitated by the strong polyanionic properties of GAGs; therefore, considering these from a polyelectrolyte vantage point can help understand how such charge-based, often transient interactions contribute to physiological and pathological processes. While the different GAG classes share key electrostatic properties, they exhibit unique structural features that shape their function. Here, we highlight how modern separation and analytical tools exploit the polyanionic character of GAGs to dissect subtle structural details. For these, the fundamental description of their charge-charge interactions is crucial. With this knowledge, modified GAGs, synthetic GAG mimetics, or GAG-binding molecules can be designed that replicate or refine their key properties and show promise for therapeutic and biomedical applications. Altogether, recognizing the importance of GAGs as polyelectrolytes provides an integrative perspective on how their charge distribution mediates crucial biomolecular interactions in health and disease, and they help complete our knowledge on fundamentally important biopolymers.

Keywords

glycosaminoglycans
polyelectrolytes
analysis
GAG-protein interactions
GAG sequestering
GAG mimetics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.