Quantifying Multidimensional Effects of Physicochemical Parameters on PFAS Adsorption Using a Hybrid Response Surface Methodology-Machine Learning Approach

21 March 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Per- and polyfluoroalkyl substances (PFAS) contamination has posed a significant environmental and public health challenge due to their ubiquitous nature. Adsorption has emerged as a promising remediation technique, yet optimizing adsorption efficiency remains complex due to the diverse physicochemical properties of PFAS and the wide range of adsorbent materials. Traditional modeling approaches, such as response surface methodology (RSM), struggled to capture nonlinear interactions, while standalone machine learning (ML) models required extensive datasets. This study addressed these limitations by developing hybrid RSM-ML models to improve the prediction and optimization of PFAS adsorption. A comprehensive dataset was constructed using experimental adsorption data, integrating key parameters such as pH, pHpzc, surface area, temperature, and PFAS molecular properties. RSM was employed to model adsorption behavior, while gradient boosting (GB), random forest (RF), and extreme gradient boosting (XGB) were used to enhance predictive performance. Hybrid models—linear, RMSE-based, multiplicative, and meta-learning—were developed and evaluated. The meta-learning HOP-RSM-GB model achieved near-perfect accuracy (R² = 1.00, RMSE = 10.59), outperforming all other models. Surface plots revealed that low pH and high pHpzc maximized the adsorption while increasing log Kow consistently enhanced PFAS adsorption. These findings establish hybrid RSM-ML modeling as a powerful framework for optimizing PFAS remediation strategies. The integration of statistical and machine learning approaches significantly improves predictive accuracy, reduces experimental costs, and provides deeper insights into adsorption mechanisms. This study underscores the importance of data-driven approaches in environmental engineering and highlights future opportunities for integrating ML-driven modeling with experimental adsorption research.

Keywords

Per- and Polyfluoroalkyl Substance (PFAS)
Machine Learning
Response Surface Methodology
Adsorption
Distribution Coefficient.

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials for "Quantifying Multidimensional Effects of Physicochemical Parameters on PFAS Adsorption Using a Hybrid Response Surface Methodology-Machine Learning Approach "
Description
3 tables and 5 figures.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.