Transferable Machine Learning Interatomic Potential for Pd-Catalyzed Cross-Coupling Reactions

18 March 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Finding efficient substrate-catalyst combinations for palladium-catalyzed cross-coupling reactions remains a critical challenge in synthetic chemistry, with broad implications for pharmaceutical and materials manufacturing. We report AIMNet2-Pd, a machine learned interatomic potential that enables rapid, accurate computational studies of palladium-catalyzed cross-coupling reactions. AIMNet2-Pd replaces computationally expensive electronic structure calculations with a neural network-based model that performs geometry optimization, transition state searches, and energy calculations in seconds while maintaining accuracy within 1-2 kcal mol⁻¹ and ~0.1 Å compared to the reference QM calculations. AIMNet2-Pd makes computational high-throughput catalyst screening and mechanistic studies of realistic systems feasible by providing on-demand thermodynamic and kinetic predictions for each step of a catalytic cycle. Importantly, the applicability of the systems extends beyond the monophosphine ligands in Pd(0)/Pd(II) cycles for which it has been trained on to chemically diverse Pd complexes. This demonstrates AIMNet2-Pd's utility to serve as a general-purpose and high-throughput tool for studying catalytic reactions.

Keywords

Machine Learning Interatomic Potential
Cross-Coupling Reactions
Suzuki-Miyaura coupling
palladium-catalyzed reactions

Supplementary materials

Title
Description
Actions
Title
SI
Description
Supplementary Information: Transferable Machine Learning Interatomic Potential for Pd-Catalyzed Cross-Coupling Reactions
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.