Towards the development of supramolecular self-associating amphiphiles as antibiofilm agents against Pseudomonas aeruginosa and Candida albicans biofilms

14 March 2025, Version 1

Abstract

The rise of antimicrobial resistant (AMR) infection represents a growing threat to the global population and to economic health. The majority of antimicrobial innovations are developed against planktonic microorganisms, however those same microorganisms contained within a biofilm can become over 1000 times more resistant to antimicrobial (including antibiotic) agents. Supramolecular self-associating amphiphiles (SSAs) are a class of amphiphilic salts and related compounds that have shown the potential for development into antibiofilm agents. Within the scope of this work we present five structurally diverse SSAs. We characterise the self-associative properties of these SSAs in the solid state and in solution, before analysing the interactions of these agents with model synthetic membranes and determining their antibiofilm activity against WHO high/critical priority pathogens, Pseudomonas aeruginosa and Candida albicans. We also combine SSAs as 1:1 co-formulations and confirm the combination of SSA to inform both SSA phospholipid membrane interaction events and biological activity. Finally, we undertake a series of in vitro and in vivo DMPK experiments to verify the drug-like properties for these structurally diverse SSAs.

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Supplementary information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.