Lignin-derived methoxyterephthalates for performance-advantaged polymers and plasticizers

11 March 2025, Version 1

Abstract

Lignin-derived aromatic carboxylic acids can be produced from oxidative catalytic processes and are promising building blocks for performance-advantaged bioproducts that leverage their inherent heteroatom functionalities. Here, we synthesize 2-methoxyterephthalate and 2,6-dimethoxyterephthalate derivatives by electrochemical carboxylation of guaiacyl- and syringyl-derived lignin monomers obtained from the oxidative deconstruction of lignin. These methoxylated terephthalates are evaluated as co monomers in poly(ethylene terephthalate) (PET) and as plasticizers that could replace petrochemically derived isophthalate and phthalate, respectively. Specifically, we co-polymerize 2-methoxy- and 2,6 dimethoxyterephthalate with dimethyl terephthalate to form several PET co-polymers, both of which enable the properties of PET to be tuned, with an incorporation beyond 25% producing amorphous polyesters. At 10 mol% loading in the co-polymers, we demonstrate that the bio-derived co-monomers exhibit comparable behavior to isophthalic acid, a commonly used co-monomer in PET, by lowering the crystallinity and melting temperature. Moreover, methoxyterephthalate esters (2-ethyl hexyl and butyl) are compared to phthalate and terephthalate ester counterparts used as poly(vinyl chloride) (PVC) plasticizers. The bio derived plasticizers are comparable to the petroleum-derived incumbents in reducing the glass transition temperature and increasing the thermal stability of PVC. Furthermore, the dimethoxyterephthalic esters are expected to have an extended lifetime in the polymer matrix, due to their lower volatility and by lower diffusion coefficients calculated by molecular dynamic simulations. These results demonstrate that the isophthalate and phthalate components in polyesters and plasticizers, respectively, could be substituted with bio-based methoxyterephthalate derivatives.

Keywords

performance-advantaged bioproduct
functional replacement
bio-based chemical
bio-based polymer
electrochemical carboxylation

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information including experimental procedures and characterization.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.