Amplifying Interfacial Capacitance Through Underpotential Deposition in Salt-in-Ionic Liquid Electrolytes

10 March 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Rapid growth of intermittent energy sources, such as wind and solar, is causing a resurgence in research on materials and devices that store electrochemical energy. Electrochemical capacitors exhibit promising device characteristics to help level grid scale power fluctuations, including fast charge-discharge kinetics and long device lifetimes. This is especially true for ionic liquids, which promise increased safety and performance, as compared to volatile organic electrolytes commonly used in batteries. However, large scale implementation of ionic liquid-based capacitors remains limited by low device energy densities, as the interfacial capacitance of ionic liquid-electrode interfaces decreases significantly under large polarization. Here, we investigate how incorporating metal cations of varying size and valence into ionic liquids modifies electric double layer formation. We find that alkali cations substantially amplify interfacial capacitance in salt-in-ionic liquid electrolytes, overcoming capacitive limitations caused by ion crowding. Remarkably, we observe capacitive enhancement exceeding 350% in lithium- and sodium-containing electrolytes at Au and Cu electrodes under large polarization, where ion crowding diminishes interfacial capacitance in neat ionic liquids. Our data indicates that metal cation underpotential deposition plays a key role in capacitive enhancement, and we observe that this process can be highly reversible under cycling. Our findings suggest that tuning metal-electrolyte interactions to enable underpotential deposition provides avenues for increasing capacitor performance. This opens the door to additional opportunities for developing devices that could play an essential role in leveling power fluctuations that are inherent to renewable energy grids.

Keywords

Electric double layer
Ion correlations
Supercapacitors
Electrolytes
Energy Storage

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information contains picture of setup, cyclic voltammetry, Nyquist plots, Cole-Cole plots, capacitance versus voltage plots, XPS data, and Raman spectroscopy data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.