Photophysics of Resveratrol Derivatives for Singlet Oxygen Formation

06 March 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Trans-resveratrol, a naturally occurring antioxidant, undergoes significant photochemical transformations upon UV irradiation, producing photoisomers and derivatives such as cis-resveratrol, 2,4,6-trihydroxy-phenanthrene (THP), and resveratrone. Using quantum chemical methods, we investigated the photophysical properties of these species, including their absorption spectra, fluorescence, and intersystem crossing (ISC) rates, to assess their potential for singlet oxygen generation. Our results indicate that while trans- and cis-resveratrol exhibit limited ISC, resveratrone and THP exhibit competitive ISC and fluorescence rates, making them suitable photosensitizers for singlet oxygen production at the same excitation energy as trans-resveratrol. However, THP is experimentally more abundant than resveratrone upon trans-resveratrol excitation and also demonstrates favorable ISC properties, suggesting that it plays a predominant role in singlet oxygen generation. These findings highlight the potential of resveratrone and THP in photodynamic applications, expanding the functional versatility of resveratrol-derived compounds.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.