‘Direct-to-biology’ drives optimisation of a cell-active covalent inhibitor of WRN helicase

06 March 2025, Version 1

Abstract

We report a ‘direct-to-biology’ (D2B) approach for optimising covalent acrylamide binders of protein targets and apply this to the identification of a selective and cell-active inhibitor of Werner (WRN) helicase. Inhibition of WRN helicase activity exhibits a synthetic lethal relationship with cancers displaying high microsatellite instability (MSI-H) and is being pursued as a therapeutic strategy in the clinic. Using intact-protein liquid chromatography-mass spectrometry (LC-MS) screening, we identified acrylamide fragment binders of the WRN helicase domain and then used covalent D2B chemistry to optimise these initial hits. Our efforts ultimately afforded a potent covalent inhibitor of WRN-mediated DNA unwinding, which displays selective, concentration-dependent cellular engagement of WRN, and demonstrates synthetic lethality in an MSI-H setting. Furthermore, our inhibitor targets a distinct conformation of WRN helicase compared to the current clinical covalent inhibitor, presenting a complementary approach for covalent inhibition of WRN helicase. This work demonstrates how D2B chemistry platforms can be used to explore structure-activity relationships in a modular fashion, while reducing investment of human and material resources.

Keywords

Direct-to-biology
Werner helicase
covalent inhibitor
MSI-H cancer

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
The file contains supplementary figures, methods and experimental sections.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.