Abstract
The characterization of mechanical properties in soft 3D printed materials at the microscale remains a significant challenge due to the lack of standardized methodologies. To address this issue, a microscale nanoindentation protocol for elastomeric 3D printed microstructures is developed, optimized, and benchmarked. Herein, a conospherical indenter tip (r = 10.26 µm), a modified trapezoidal displacement profile with lift-off segments to capture adhesion interactions, and the nano-Johnson-Kendall-Roberts model for data analysis is employed. The protocol is optimized and verified using four newly developed PDMS-based inks for two-photon 3D laser printing. The results are compared to a state-of-the-art literature protocol that uses a Berkovich tip and the Oliver-Pharr model. It is shown that adhesion forces play a significant role in mechanical properties overestimation, showing differences of up to 80% between the different protocols. This study highlights the importance of carefully selecting characterization protocol to yield comparable results between studies. By providing a standardized protocol, it paves the way for straightforward and accurate characterization of mechanical properties in soft 3D printed materials at the microscale.
Supplementary materials
Title
Supporting Information
Description
Supporting information regarding Raman and NMR spectra and nanoindentation results.
Actions