Abstract
Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes materials for lithium-ion batteries. Currently, they are also emerging as promising anodes for sodium-ion batteries due to their low volume change and safety. However, the potential electrochemical performance in sodium energy storage is not fully achieved, primarily due to the larger radius of the Na+-ions. Here, we report for the first time an iron niobate with columbite structure as a high-performance sodium storage anode. The presence of iron in the structure is vital to trigger the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible Na storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ insertion and extraction, as demonstrated through operando and ex-situ characterizations. It leads to an applicable reversible capacity (> 300 mAh g-1) with a favorable average voltage of ca. 0.6 V and excellent rate capability (180.4 mAh g-1 at a current density of 2 A g-1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation.