When Theory Came First: A Review of Theoretical Chemical Predictions Ahead of Experiments

01 March 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

For decades, computational theoretical chemistry has provided critical insights into molecular behavior, often anticipating experimental discoveries. This review surveys twenty notable examples from the past fifteen years in which computational chemistry successfully predicted molecular structures, reaction mechanisms, and material properties before experimental confirmation. Spanning fields such as bioinorganic chemistry, materials science, catalysis, and quantum transport, these case studies illustrate how quantum chemical methods have become essential for multidisciplinary molecular sciences. The impact of theoretical predictions across disciplines shows the indispensable role of computational chemistry in guiding experiments and driving scientific discovery.

Keywords

Computational Chemistry
Quantum Chemical Predictions
Multidisciplinary Research
Theoretical vs. Experimental Chemistry
Molecular Design and Discovery

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.