Rh-catalyzed mechanochemical transfer hydrogenation for the synthesis of periphery-hydrogenated polycyclic aromatic compounds

26 February 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydrogenated nanographene has attracted attention as a new class of nanocarbon material owing to its potential applications in various research fields. However, the synthesis of periphery-hydrogenated nanographenes or polycyclic aromatic hydrocarbons (PAHs) is a significant challenge because of the harsh conditions and poor solubility of the starting materials. Conventional solution-state conditions require high-pressure hydrogen gas and a lengthy reaction time. In this study, we developed a novel approach utilizing rhodium-catalyzed mechanochemical transfer hydrogenation, which enables hydrogenation without using hydrogen gas. Various hydrogenated PAHs were rapidly obtained using a simple protocol under ambient atmosphere and air, with one PAH showcasing intriguing properties such as aggregation-induced emission. Thus, the demonstrated mechanochemical hydrogenation method is expected to contribute to the rapid and efficient synthesis of a novel class of sp2/sp3-carbon-conjugated hydrocarbons.

Keywords

Hydrogenation
Polycyclic aromatic hydrocarbons
Mechanochemistry
Aggregation-induced emission
Nanographene

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.