Polytypes and Planar Defects Revealed in the Purine Base Xanthine using Multi-Dimensional Electron Diffraction

24 February 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Layered crystal structures are commonly found across organic and inorganic material systems. When in-plane atomic arrangement remains (nearly) identical, a stacking variation of these layers may result in twinning, planar disorder, or polytypes, a form of polymorphism derived from altering stacking sequences. In this work, we use multi-dimensional electron diffraction (ED) modalities to explore the microstructure of xanthine, an archetypal purine base with a layered crystal structure. Firstly, we identify and characterise the twin operator relating domains of Form I xanthine. We then solve the structure of a new xanthine polymorph, revealing that it is a polytype of Form I. Finally, interfaces between twin and polytype domains are visualised, whilst streaking in the diffraction patterns reveals the presence of planar disorder. Given these observations in the xanthine system, this work suggests that disorder on the nanoscale may be a commonly occurring phenomenon in layered organic molecular crystals.

Supplementary materials

Title
Description
Actions
Title
Supporting Information: Polytypes and Planar Defects Revealed in the Purine Base Xanthine using Multi-Dimensional Electron Diffraction
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.