Ultrafast laser synthesis of zeolites

05 February 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Research has demonstrated that zeolite nucleation and growth can be controlled by fine-tuning chemical composition, temperature, and pressure, resulting in structures with diverse porosities and functionalities. Nevertheless, current energy delivery methods lack the finesse required to operate on the femto- and picosecond timescales of silica polymerisation and depolymerisation, limiting their ability to direct synthesis with high precision. To overcome this limitation, we introduce an ultrafast laser synthesis technique capable of delivering energy at these timescales with unprecedented spatiotemporal precision. Unlike conventional or emerging approaches, this method bypasses the need for specific temperature and pressure settings, as nucleation and growth are governed by dynamic phenomena arising from nonlinear light-matter interactions—such as convective flows, cavitation bubbles, plasma formation, and shock waves. These processes can be initiated, paused, and resumed within fractions of a second, effectively “freezing” structures at any stage of self-assembly. Using this approach, we traced the entire nucleation and growth pathway of laser-synthesized TPA-silicate-1 zeolites, from early oligomer formation to fully developed crystals. The unprecedented spatiotemporal control of this technique unlocks new avenues for manipulating reaction pathways and exploring the vast configurational space of zeolites.

Keywords

ultrafast laser
zeolite
laser-matter interactions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.