Abstract
We present Jammed Interconnected Bilayer Emulsions (JIBEs) as a class of tissue-like materials with macroscopic scalability and rapid fabrication, comprising millions to billions of bilayer-separated aqueous compartments. These materials closely mimic the organizational structure and properties of biological tissues. Our rapid self-assembly method for producing JIBEs generates milliliter- to deciliter-scale volumes within minutes representing over 10,000-fold improvement in the fabrication speed of droplet-based artificial tissues compared to existing droplet-based methods, enabling the creation of a truly macroscopic material. The method is highly adaptable to a wide range of amphiphiles, including lipids and block-copolymers, providing flexibility in tailoring JIBEs for diverse applications. The jammed architecture of JIBEs imparts unique properties, such as direct 3D-printabilty into aqueous solutions or onto air-exposed surfaces. Their membrane-bound structure also allows functionalization with biological and artificial nanochannels, enabling the material to exhibit the specific properties of the incorporated channels. In this work, we demonstrate three key features of JIBEs using distinct ion channels: tunable conductance, selective transport, and memristance. Incorporating an E. coli outer membrane protein increased ionic conductance by approximately 4,400-fold compared to non-functionalized tissues. Introducing a peptide-based transporter produced ion-selective membranes capable of discriminating ammonium over sodium at a ratio greater than 15:1. Finally, incorporating a model voltage-gated pore enabled the construction of a massively networked memristive device. We propose that functionalizing JIBEs with additional membrane proteins or synthetic ion channels could unlock a broad range of applications, including separations, energy generation and storage, neuromorphic computing, tissue engineering, drug delivery, and soft robotics.
Supplementary materials
Title
Supplementary Materials
Description
This includes detailed procedures and additional supporting data
Actions