Beyond Barriers, Big Crystallisation Hurdles: Atropisomerism in bRo5 Compounds Explored by Computational and NMR Studies

03 February 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Crystallisation and stereochemical stability are pivotal factors in pharmaceutical development, particularly for complex beyond Rule of 5 (bRo5) compounds. In this study, we explore the intricate interplay between atropisomerism and crystallisation using two model bRo5 compounds, namely ACBI1 and BI201335, both violating three of four Lipinski’s rules. One of the tool compounds exhibits Class 2 atropisomeric behaviour and the other devoid of it. A diverse array of crystallisation methods—including solution-phase crystallisation, co-crystallisation, and salt formation—was applied, revealing the critical role of atropisomerism induced stereochemistry in polymorphism and nucleation outcomes. In-silico torsion profile calculations and NMR studies were employed to elucidate the rotational energy barriers and confirm the presence or absence of atropisomerism. This comprehensive analysis highlights the significance of understanding stereochemical phenomena like atropisomerism in designing and developing bRo5 compounds. By integrating advanced analytical techniques and crystallisation strategies, this work provides novel insights into tailoring pharmaceutical properties for next-generation therapeutics.

Keywords

bRo5 Compounds
Atropisomerism
Crystallisation
Rotational Barriers
in-silico Calculations
NMR Studies

Supplementary materials

Title
Description
Actions
Title
Supporting Information: Experimental, Calculations, Analyses
Description
Contains all data produced
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.