Mononuclear Palladium(I) and Palladium(III) Coordination Compounds

31 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Palladium coordination complexes are invaluable catalysts in organometallic reactions, facilitating a plethora of synthetically useful organic transformations that include C-H functionalization and C-C/C-heteroatom bond formation reactions. The proposed mechanisms for such reactions usually invoke two-electron pathways involving diamagnetic Pd0, PdII, and PdIV intermediates. However, recent research has focused on the viability of paramagnetic Pd species with +1 and +3 oxidation states as plausible intermediates. The past two decades have seen a renewed interest in the isolation and characterization of such transient species to obtain a better understanding of their structure and reactivity. This review focuses on the coordination chemistry of mononuclear PdI and PdIII compounds that have been isolated and characterized using spectroscopic techniques such as electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), cyclic voltammetry (CV), electrospray ionization mass spectrometry (ESI-MS), single crystal X-ray crystallography (SC-XRD), and X-ray absorption spectroscopy (XAS) methods. It is expected that the knowledge gained from studying the electronic structure and spectroscopic properties of these compounds will be used to facilitate new modes of reactivity inaccessible to traditional Pd0/II/IV chemistry.

Keywords

palladium(I)
palladium(III)
metalloradical
electron paramagnetic resonance (EPR)

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.