Strong impacts of inter-π-chain charge transfer accelerating CO2 reduction photocatalysis of carbazole–diimine-based linear conjugated polymer/Ru complex hybrids

31 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Conjugated polymers are promising candidates for photocatalyst materials owing to the molecular design flexibility in tuning their properties, including visible light responsiveness. The rational introduction of a molecular metal complex acting as a catalyst at a specific location is an effective approach to activate conjugated polymer photocatalysts for the selective conversion of small molecules, such as carbon dioxide. However, the photocatalytic activity of the conjugated polymer/metal complex hybrids has not been satisfactory. In particular, there is still much room for improvement in polymer structure engineering to maximise the activation of a molecular complex catalyst centre by photoexcited electrons. This work demonstrates the strong impact of side chains and ligand structures, which do not significantly affect the optical properties of the polymers, on their photocatalytic performance for CO2 reduction. The relatively rigid aromatic side chains and condensed aromatic ligand moieties enable effective inter-π-chain charge transfer to activate the isolated (i.e. low-concentration) Ru(II) complex catalyst. The manipulation of photoexcited charge transfer by structural modulation resulted in a significantly improved photocatalytic activity (quantum efficiency of 2.2% at 450 nm) compared to the counterpart photocatalysts containing the alkyl side chain and bipyridine ligand moieties.

Keywords

CO2 reduction
Conjugated Polymer
Metal Complex
Artificial photosynthesis

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information available: Electron microscope images, spectroscopic data, and calculated molecular orbitals.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.