Abstract
Wireframe DNA nanocages, an important type of DNA nanomaterials, exhibit exceptional programmability for chemical modifications, along with tunable size and shape. Nevertheless, the impact of their conformational fluctuations on cage design has not been thoroughly explored, despite speculation regarding its influence on biomedical applications. This study marks the first systematic examination of the conformational dynamics of prismatic DNA nanocages through molecular modeling and simulation. By comparing four different DNA nanocage topologies, we uncover design parameter combinations and conditions that facilitate access to varying conformational states. We observe the expansion and contraction of these cages across various topologies, hybridization states, and ionic environments (Mg2+/Na+), with their volumes varying from 15% to 150% of the ideal cage volumes. Our results indicate that the dynamics of DNA cages is influenced by the concentrations of Mg2+ and Na+ ions. Additionally, the flexibility of specific DNA strands can be manipulated, thereby altering the cage volume, through the selective hybridization of the cage edges. Ultimately, the conformational dynamics of DNA nanocages are captured in atomic detail. This study offers valuable modeling tools and methodologies to assist future DNA nanocage design endeavors.
Supplementary materials
Title
Supplementary Data
Description
The Supplementary Data includes supporting figures, tables, movies, methods, and analysis. The simulation trajectories supporting this study's findings are available from the corresponding author upon reasonable request.
Actions