Abstract
We investigate the rate constant of poly-butyl acrylate backbiting between 310 and 510 K using semi-empirical metadynamics in the gas phase, bulk and solution. The simulations in condensed phase are performed through a hybrid quantum mechanics/molecular mechanics approach. The free energy landscape associated to the reactive events in vacuum and in condesed phase are used to correct harmonic transition state theory (TST) rate constants. The Arrhenius parameters so determined are introduced in a semi-detailed mechanistic kinetic mechanism of butyl acrylate polymerization in bulk and in solution, allowing to test how butyl acrylate polymerization rate is affected by solvent-induced cage effects on backbiting. The results show that the backbiting rate constant is higher in the condensed phase than in the gas phase. In addition, a twofold increase is observed in xylene compared to bulk. These results differ significantly from previous theoretical calculations, especially at high temperatures, aligning better with experimental rate measurements. The semi-detailed model, incorporating our calculated rate coefficients, is validated against monomer concentration profiles from bulk and solution polymerizations in various reactor configurations, demonstrating good agreement with experimental data. This study paves the way for developing detailed kinetic models in the condensed phase using a priori kinetic parameters derived from molecular simulations, thus widening their range of applicability beyond the one experimentally accessible.
Supplementary materials
Title
Supplementary Informations
Description
Bivariate potential of mean force, bootstrap variance and global convergence of standard deviation.
Univariate marginal potential of mean force with standard deviation, global convergence of the marginal potential of mean force.
Actions