Molecular Glue-Augmented E2-Ubiquitin Recognition from A Computational Approach

21 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ubiquitin (Ub) is a small regulatory protein that tags unwanted or misfolded proteins for degradation by the proteasome. Molecular glues as small molecules stabilizing and augmenting protein-protein interactions have gained increasing attention in ubiquitination. Highly efficient computational approaches for the investigation of thermodynamics of molecular glue (MG)-Ub-protease systems remain absent. In this work, we introduced a cost-effective computational framework for all-atom characterization of the thermodynamics driving force in the cooperativity or molecule glue-induced enhancement of Ub-E2 recognition. Based on the testing bed involving the CDC34A-Ub protein-protein system and 18 unique molecule glues, we illustrate that our method could satisfactorily decoding the interaction thermodynamics inside the multimeric system. Specifically, our method enables both the ranking the protein-ligand MG-(E2-Ub) affinity and qualitatively capture the MG-induced E2-Ub interaction strengthening, which are generally unachievable with standard methods such as MM/GBSA and commonly applied scoring functions (e.g., AutoDock Vina). We additionally explore the general picture of the interfacial interactions in the multimeric complex, identifying important residues in the binding of molecular glue to Ub-E2 complex and also in Ub-E2 binding. Our computational approach could facilitate high-throughput virtual screening of potent molecular glues in assisting protein-protein recognition and ubiquitination.

Keywords

Molecular Glue
Ubiquitin
Protein-protein Interaction
Protein-ligand Binding
Cooperativity
Molecular Docking
ASGB-IE
Mutational Scanning

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.