A continuous flow generator of acetyl nitrate for the synthesis of nitrofuran-based pharmaceuticals

21 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nitrofurfural is a key building block for the synthesis of antimicrobial nitrofurans as active pharmaceutical ingredients. Its synthesis involves the nitration of furfural, a substrate derived from biobased resources. However, furfural has a delicate heteroaromatic backbone. Typical nitrations involve harsh reaction conditions, which often compromise this structure, resulting in poor reproducibility and low yields. Although acetyl nitrate, a mild nitrating agent, is suitable for this task, major deterrents remain. First, its conventional preparation method involves conditions that are not compatible with furfural. Second, significant safety concerns are associated with the unstable and explosive nature of acetyl nitrate. These critical issues are addressed herein. A safe and robust continuous flow platform featuring in situ generation of acetyl nitrate for the nitration of furfural to nitrofurfural is reported. The high level of integration and automation enables remote process operation by a single operator. Key furfural-based pharmaceutical intermediates were synthesized with favorable metrics and high reproducibility. The efficiency of this flow platform is demonstrated using a selection of best-selling nitrofuran pharmaceuticals (nifuroxazide, nifurtimox, nitrofurantoin and nitrofural), which were obtained with excellent isolated yields in under five minutes.

Keywords

Nitration platforms
Furfural
Nitrofurans
Flow Chemistry
Process Analytical Technology

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
The Supporting Information is available free of charge: Methods, hardware, experimental protocols, analytical data, and computational data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.