Improved C5-amide bioisosteres for human neuraminidase 1 inhibitors based on 2-deoxy-2,3-didehydro-N-acetyl neuraminic acid (DANA)

17 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Neuraminidase enzymes (NEU) play a crucial role in many physiological and pathological conditions. Humans have four isoenzymes of NEU and their specific roles continue to be investigated. Isoenzyme-selective inhibitors are needed as research tools and may lead to future therapeutics. We tested a series of new candidate inhibitors by replacing the C5-amide of 2-deoxy-2,3-dididehydro-N-acetyl neuraminic acid (DANA) with amide bioisosteres. Design of candidate inhibitors was accomplished using substituents that were components of previously identified NEU inhibitors combined with alternative amide bioisosteres. Compounds were tested for inhibition of the four human NEU, and inhibitory activities were compared to reference amide compounds. We observed that 1,4-disubstituted-1,2,3-triazole was the best bioisostere for inhibitors of NEU1. Inhibitor 542 showed high potency for NEU1 (K¬i = 0.4 ± 0.1 μM) and gave significant improvement in selectivity compared to the reference amide compound 502. Additionally, compound 542 had improved lipophilic characteristics which could provide improved pharmacokinetic properties. Screening of these inhibitors also identified a selective NEU2 inhibitor 543 (Ki = 2.6 ± 0.6 μM), illustrating that amide bioisostere replacement can identify improved inhibitors for multiple NEU isoenzymes.

Keywords

neuraminidase
sialidase
glycosidase
inhibitor

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.