Diastereo- and Enantioselective Chemoenzymatic Synthesis of Chiral Tricyclic Intermediate of Anti-HIV Drug Lenacapavir

18 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite its great potential, the development and implementation of scalable new-to-nature biocatalytic transformations in the chemoenzymatic synthesis of clinically significant pharmaceuticals still present a considerable challenge. We developed a chemoenzymatic synthesis of very recently developed anti-HIV drug lenacapavir’s 5/5/3 fused tricyclic fragment featuring an unusual chiral cyclopropane moiety. Key to this development is a biocatalyst-controlled, fully diastereo- and enantiodivergent cyclopropanation of a highly functionalized vinylpyrazole substrate, granting access to all four possible stereoisomers of lenacapavir cyclopropane. High-throughput experimentation led to the discovery of heme-dependent globins, including nitrous oxide dioxygenase (NOD) and protoglobin (Pgb), as promising cyclopropanation biocatalysts. Directed evolution furnished a highly diastereo- and enantioselective cyclopropanation (up to 99:1 d.r. and 99:1 e.r.). Further developed downstream chemical cyclization afforded the desired lenacapavir 5/5/3 fused tricycle with great stereochemical purity.

Keywords

lenacapavir
antiviral drug
biocatalysis
enzyme engineering
chemoenzymatic synthesis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.