How Local is `Local'? Deep Learning Reveals Locality of the Induced Magnetic Field of Polycyclic Aromatic Hydrocarbons

14 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We investigate the locality of magnetic response in polycyclic aromatic molecules using a novel deep-learning approach. Our method employs graph neural networks (GNNs) with a graph-of-rings representation to predict Nucleus-Independent Chemical Shifts in the space around the molecule. We train a series of models, each time reducing the size of the largest molecules used in training. The accuracy of prediction remains high (MAE < 0.5 ppm), even when training the model only on molecules with up to 4 rings, thus providing strong evidence for the locality of magnetic response. To overcome the known problem of generalization of GNNs, we implement a k-hop expansion strategy and succeed in achieving accurate predictions for molecules with up to 15 rings (almost 4 times the size of the largest training example). Our findings have implications for understanding the magnetic response in complex molecules and demonstrate a promising approach to overcoming GNN scalability limitations. Furthermore, the trained models enable rapid characterization, without the need for more expensive DFT calculations.

Keywords

polybenzenoid hydrocarbons
induced magnetic field
graph neural network
local effects
deep learning

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Additional information, discussion, detailed data set
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.